8 resultados para Aquatic ecology

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Back-reef seascapes represent critical habitat for juvenile and adult fishes. Patch reef, seagrass, and mangrove habitats form a heterogeneous mosaic, often linked by species that use reefs as structure during the day and make foraging migrations into soft-bottom habitat at night. Artificial reefs are used to model natural patch reefs, however may not function equivalently as fish habitat. To study the relative value of natural and artificial patch reefs as fish habitat, these communities in the Sea of Abaco, Bahamas were compared using roving diver surveys and time-lapse photography. Diel turnover in fish abundance, recorded with time-lapse photography and illuminated by infrared light, was quantified across midday, dusk, and night periods to explore possible effects of reef type (artificial vs. natural) on these patterns. Diurnal communities on natural reefs exhibited greater fish abundance, species richness, and functional diversity compared to artificial reefs. Furthermore, both types of reef communities exhibited a significant shift across the diel period, characterized by a decline in total fish density at night, especially for grunts (Haemulidae). Cross-habitat foraging migrations by diurnal or nocturnal species, such as haemulids, are likely central drivers of this twilight turnover and can represent important energy and nutrient subsidies. Time-lapse surveys provided more consistent measures of reef fish assemblages for the smaller artificial reef habitats, yet underestimated abundance of certain taxa and species richness on larger patch habitats when compared to the roving diver surveys. Time-lapse photography complemented with infrared light represent a valuable non-invasive approach to studying behavior of focal species and their fine-scale temporal dynamics in shallow-reef communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coral reefs are among the most productive ecosystems in the world. Yet, with their recent declines due to disease, climate change, and overfishing, restoration of these habitats is one of the main concerns for ecologists, resource managers, and government organizations. Coral reef restoration aims to promote key ecosystem processes to shift these habitats to their historical state of high coral cover, but few studies have focused on effective ways to promote resilience. In addition, little is known about the impact of restoration on the fish communities. The aim of this study is to understand how the community of herbivorous fishes is affected by the density of coral outplants inside a special protection area located in the Florida Keys National Marine Sanctuary. Grazing rates, number of visits and time spent foraging were compared using video footage of sites previously devoid of corals, and six months after coral restorations had occurred. Coral transplantations did not appear to attract herbivores nor increase grazing rates of fishes. Instead Sparisoma and Acanthurus fishes appear to respond to changes in the environment by modifying their grazing behavior. However, there was an observed increase in visits by Acanthurus species after transplantation for all the sites sampled within the reef. These fishes seemed to prefer low coral cover sites for grazing. This study highlights the importance of examining coral restorations impacts at the community level. Understanding how restoration influences herbivores and other guilds of reef fishes will allow individuals to not only determine if these habitats are returning to their “original” state, but provide more information on the ways these systems cope with changes in the environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This poster presentation from the May 2015 Florida Library Association Conference, along with the Everglades Explorer discovery portal at http://ee.fiu.edu, demonstrates how traditional bibliographic and curatorial principles can be applied to: 1) selection, cross-walking and aggregation of metadata linking end-users to wide-spread digital resources from multiple silos; 2) harvesting of select PDFs, HTML and media for web archiving and access; 3) selection of CMS domains, sub-domains and folders for targeted searching using an API. Choosing content for this discovery portal is comparable to past scholarly practice of creating and publishing subject bibliographies, except metadata and data are housed in relational databases. This new and yet traditional capacity coincides with: Growth of bibliographic utilities (MarcEdit); Evolution of open-source discovery systems (eXtensible Catalog); Development of target-capable web crawling and archiving systems (Archive-it); and specialized search APIs (Google). At the same time, historical and technical changes – specifically the increasing fluidity and re-purposing of syndicated metadata – make this possible. It equally stems from the expansion of freely accessible digitized legacy and born-digital resources. Innovation principles helped frame the process by which the thematic Everglades discovery portal was created at Florida International University. The path -- to providing for more effective searching and co-location of digital scientific, educational and historical material related to the Everglades -- is contextualized through five concepts found within Dyer and Christensen’s “The Innovator’s DNA: Mastering the five skills of disruptive innovators (2011). The project also aligns with Ranganathan’s Laws of Library Science, especially the 4th Law -- to "save the time of the user.”

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study three aspects of sexual reproduction in Everglades plants were examined to more clearly understand seed dispersal and the allocation of resources to sexual reproduction— spatial dispersal process, temporal dispersal of seeds (seedbank), and germination patterns in the dominant species, sawgrass (Cladium jamaicense). Community assembly rules for fruit dispersal were deduced by analysis of functional traits associated with this process. Seedbank ecology was investigated by monitoring emergence of germinants from sawgrass soil samples held under varying water depths to determine the fate of dispersed seeds. Fine-scale study of sawgrass fruits yielded information on contributions to variation in sexually produced propagules in this species, which primarily reproduces vegetatively. It was hypothesized that Everglades plants possess a set of functional traits that enhance diaspore dispersal. To test this, 14 traits were evaluated among 51 species by factor analysis. The factorial plot of this analysis generated groups of related traits, with four suites of traits forming dispersal syndromes. Hydrochory traits were categorized by buoyancy and appendages enhancing buoyancy. Anemochory traits were categorized by diaspore size and appendages enhancing air movement. Epizoochory traits were categorized by diaspore size, buoyancy, and appendages allowing for attachment. Endozoochory traits were categorized by diaspore size, buoyancy, and appendages aiding diaspore presentation. These patterns/trends of functional trait organization also represent dispersal community assembly rules. Seeds dispersed by hydrochory were hypothesized to be caught most often in the edge of the north side of sawgrass patches. Patterns of germination and dispersal mode of all hydrochorous macrophytes with propagules in the seedbank were elucidated by germination analysis from 90 soil samples collected from 10 sawgrass patches. Mean site seed density was 486 seeds/m2 from 13 species. Most seeds collected at the north side of patches and significantly in the outer one meter of the patch edge (p = 0.013). Sawgrass seed germination was hypothesized to vary by site, among individual plants, and within different locations of a plant’s infructescence. An analysis of sawgrass fruits with nested ANOVAs found that collection site and interaction of site x individual plant significantly affect germination ability, seed viability, and fruit size (p < 0.050). Fruit location within a plant’s infructescence did not significantly affect germination. As for allocation of resources to sexual reproduction, only 17.9% of sawgrass seeds germinated and only 4.8% of ungerminated seeds with fleshy endosperm were presumed viable, but dormant. Collectively, only 22% of all sawgrass seeds produced were viable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Southeast Florida’s continual urban expansion will potentially increase anthropogenic pollution in adjacent coastal marine systems. Furthermore, increased nutrient loads could have detrimental effects on the already threatened Florida Reef Tract. The present study uses a stable isotopic approach to determine the sources and the impact of nutrients on the Florida Reef Tract. δ13C and δ15N analysis of macroalgae, sponges, and sediment were analyzed in order to determine nutrient inputs in this region. While δ13C data did not display any significant trends spatially, δ15N values of the majority of biota exhibited a strong East to West gradient with more enriched values close to shore. Relative enrichment in δ15N values were measured for sediments sampled along the Florida Reef Tract in comparison to a pristine Marquesas Keys sediment core. The δ15N data also implies that shoreline anthropogenic nutrients have more nutrient loading implications on reefs than major point sources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study evaluated the effects of herbivory pressure, nutrient availability and potential propagule supply on recruitment and succession of coral reef macroalgal communities. Recruitment and succession tiles were placed in a nutrient-herbivory factorial experiment and macroalgal abundances were evaluated through time. Proportional abundances of macroalgal form-functional groups on recruitment and succession tiles were similar to field established communities within treatments, evidencing possible effects of adult macroalgae as propagule supply. Macroalgal abundance of recruitment tiles increased with nutrient loading and herbivory reduction combined whereas on succession tiles nutrient loading increased abundance of articulated-calcareous only when herbivores were excluded. Macroalgal field established communities were only affected by herbivory reduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The state of Florida has one of the most severe exotic species invasion problems in the United States, but little is known about their influence on soil biogeochemistry. My dissertation research includes a cross-continental field study in Australia, Florida, and greenhouse and growth chamber experiments, focused on the soil-plant interactions of one of the most problematic weeds introduced in south Florida, Lygodium microphyllum (Old World climbing fern). Analysis of field samples from the ferns introduced and their native range indicate that L microphyllum is highly dependent on arbuscular mycorrhizal fungi (AMF) for phosphorus uptake and biomass accumulation. Relationship with AMF is stronger in relatively dry conditions, which are commonly found in some Florida sites, compared to more common wet sites where the fern is found in its native Australia. In the field, L. microphyllum is found to thrive in a wide range of soil pH, texture, and nutrient conditions, with strongly acidic soils in Australia and slightly acidic soils in Florida. Soils with pH 5.5 - 6.5 provide the most optimal growth conditions for L. microphyllum, and the growth declines significantly at soil pH 8.0, indicating that further reduction could happen in more alkaline soils. Comparison of invaded and uninvaded soil characteristics demonstrates that L. microphyllum can change the belowground soil environment, with more conspicuous impact on nutrient-poor sandy soils, to its own benefit by enhancing the soil nutrient status. Additionally, the nitrogen concentration in the leaves, which has a significant influence in the relative growth rate and photosynthesis, was significantly higher in Florida plants compared to Australian plants. Given that L. microphyllum allocates up to 40% of the total biomass to rhizomes, which aid in rapid regeneration after burning, cutting or chemical spray, hence management techniques targeting the rhizomes look promising. Over all, my results reveal for the first time that soil pH, texture, and AMF are major factors facilitating the invasive success of L. mcirophyllum. Finally, herbicide treatments targeting rhizomes will most likely become the widely used technique to control invasiveness of L. microphyllum in the future. However, a complete understanding of the soil ecosystem is necessary before adding any chemicals to the soil to achieve a successful long-term invasive species management strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project examined the pathways of mercury (Hg) bioaccumulation and its relation to trophic position and hydroperiod in the Everglades. I described fish-diet differences across habitats and seasons by analyzing stomach contents of 4,000 fishes of 32 native and introduced species. Major foods included periphyton, detritus/algal conglomerate, small invertebrates, aquatic insects, decapods, and fishes. Florida gar, largemouth bass, pike killifish, and bowfin were at the top of the piscine food web. Using prey volumes, I quantitatively classified the fishes into trophic groups of herbivores, omnivores, and carnivores. Stable-isotope analysis of fishes and invertebrates gave an independent and similar assessment of trophic placement. Trophic patterns were similar to those from tropical communities. I tested for correlations of trophic position and total mercury. Over 4,000 fish, 620 invertebrate, and 46 plant samples were analyzed for mercury with an atomic-fluorescence spectrometer. Mercury varied within and among taxa. Invertebrates ranged from 25–200 ng g −1 ww. Small-bodied fishes varied from 78–>400 ng g −1 ww. Large predatory fishes were highest, reaching a maximum of 1,515 ng−1 ww. Hg concentrations in both fishes and invertebrates were positively correlated with trophic position. I examined the effects of season and hydroperiod on mercury in wild and caged mosquitofish at three pairs of marshes. Nine monthly collections of wild mosquitofish were analyzed. Hydroperiod-within-site significantly affected concentrations but it interacted with sampling period. To control for wild-fish dispersal, and to measure in situ uptake and growth, I placed captive-reared, neonate mosquitofish with mercury levels from 7–14 ng g−1 ww into field cages in the six study marshes in six trials. Uptake rates ranged from 0.25–3.61 ng g−1 ww d −1. As with the wild fish, hydroperiod-within-site was a significant main effect that also interacted with sampling period. Survival exceeded 80%. Growth varied with season and hydroperiod, with greatest growth in short-hydroperiod marshes. The results suggest that dietary bioaccumulation determined mercury levels in Everglades aquatic animals, and that, although hydroperiod affected mercury uptake, its effect varied with season. ^